0\ \ \ \Rightarrow\ \ \ exist\ two\ zeros\ of\ the\ function\\\\Vieta's\ formulas:\ \ \ x_1+x_2=- \frac{b}{a} \\\\x_1+x_2=- \frac{-1}{6} = \frac{1}{6}\\\\Ans.\ \ \ The\ sum\ of\ zeros\ is\ \frac{1}{6}"> y = 6 x 2 − x − 2 ⇒ Δ = ( − 1 ) 2 − 4 ⋅ 6 ⋅ ( − 2 ) = 1 + 48 = 49 Δ > 0 ⇒ e x i s t tw o zeros o f t h e f u n c t i o n Vi e t a ′ s f or m u l a s : x 1 + x 2 = − a b x 1 + x 2 = − 6 − 1 = 6 1 A n s . T h e s u m o f zeros i s 6 1
It factors out to (2x+1)(3x-2) zeroes are -1/2 and 2/3 sum is 1/6 Final answer: 1/6
The sum of the zeros of the function y = 6 x 2 − x − 2 is 6 1 . This is calculated using the formula for the sum of zeros of a quadratic function, which is − a b . In this case, with a = 6 and b = − 1 , the result simplifies to 6 1 .
;