[z^2+17=(4-3i)^2+17=16-24i-9+17=24-24i\ |z|=\sqrt{4^2+(-3)^2}=\sqrt{16+9}=\sqrt{25}=5\\ k(z^2+17)=|x|(1-i)\ k(24-24i)=5(1-i)\ 24k(1-i)=5(1-i)\ 24k=5\ k=\frac{5}{24}
]
We computed z 2 + 17 as 24 − 24 i and found the modulus of z to be 5 . By solving the equation k ( z 2 + 17 ) = ∣ z ∣ ( 1 − i ) , we determined that k = 24 5 .
;