HRS - Ask. Learn. Share Knowledge. Logo

In Mathematics / High School | 2014-11-16

Factor the expression \(-35x^2 - 41x - 12\).

Asked by RocNation

Answer (2)

0\ then\ ax^2+bx+c=a(x-x_1)(x-x_2)\ where\ x_{1;2}=\frac{-b\pm\sqrt\Delta}{2a}\\\========================================"> a x 2 + b x + c Δ = b 2 − 4 a c i f Δ > 0 t h e n a x 2 + b x + c = a ( x − x 1 ​ ) ( x − x 2 ​ ) w h ere x 1 ; 2 ​ = 2 a − b ± Δ ​ ​ = ˉ ======================================
0\\\\\sqrt\Delta=\sqrt1=1\\\\x_1=\frac{-(-41)-1}{2\cdot(-35)}=\frac{41-1}{-70}=\frac{40}{-70}=-\frac{4}{7}\\\\x_2=\frac{-(-41)+1}{2\cdot(-35)}=\frac{41+1}{-70}=\frac{42}{-70}=-\frac{21}{35}=-\frac{3}{5}\\\\therefore:\\\\\boxed{-35x^2-41-12=-35\left(x+\frac{4}{7}\right)\left(x+\frac{3}{5}\right)}"> − 35 x 2 − 41 x − 12 a = − 35 ; b = − 41 ; c = − 12 Δ = ( − 41 ) 2 − 4 ⋅ ( − 35 ) ⋅ ( − 12 ) = 1681 − 1680 = 1 > 0 Δ ​ = 1 ​ = 1 x 1 ​ = 2 ⋅ ( − 35 ) − ( − 41 ) − 1 ​ = − 70 41 − 1 ​ = − 70 40 ​ = − 7 4 ​ x 2 ​ = 2 ⋅ ( − 35 ) − ( − 41 ) + 1 ​ = − 70 41 + 1 ​ = − 70 42 ​ = − 35 21 ​ = − 5 3 ​ t h ere f ore : − 35 x 2 − 41 − 12 = − 35 ( x + 7 4 ​ ) ( x + 5 3 ​ ) ​

Answered by Anonymous | 2024-06-10

To factor the expression − 35 x 2 − 41 x − 12 , we calculate the discriminant and find the roots using the quadratic formula. The factored form of the expression is − 35 ( x + 7 4 ​ ) ( x + 5 3 ​ ) .
;

Answered by Anonymous | 2025-06-17