(5x-3)(x^3 - 5x +2)
Use 5x to multiply each of (x^3 - 5x +2) and -3 to multiply each of (x^3 - 5x +2)
= 5x(x^3) +5x(-5x) +5x(2) -3(x^3) -3(-5x) -3(+2). = 5x^4 - 25x^2 + 10x - 3x^3 + 15x - 6. Rearrange and Regroup = 5x^4 - 3x^3 - 25x^2 + 10x +15x -6. = 5x^4 - 3x^3 - 25x^2 + 25x -6.
That's it.
( 5 x − 3 ) ( x 3 − 5 x + 2 ) = 5 x 4 − 25 x 2 + 10 x − 3 x 3 + 15 x − 6 = 5 x 4 − 3 x 3 − 25 x 2 + 25 x − 6 P ro d u c t i s e q u a l t o 5 x 4 − 3 x 3 − 25 x 2 + 25 x − 6
To find the product of ( 5 x − 3 ) ( x 3 − 5 x + 2 ) , we apply the distributive property by multiplying each term in the first polynomial by each term in the second polynomial. The final result is 5 x 4 − 3 x 3 − 25 x 2 + 25 x − 6 .
;