x 6 + 2 x 4 − 16 x 2 − 32 = x 4 ( x 2 + 2 ) − 16 ( x 2 + 2 ) = ( x 2 + 2 ) ( x 4 − 16 ) = = ( x 2 + 2 ) ( x 4 − 4 2 ) = ( x 2 + 2 ) ( x 2 − 4 ) ( x 2 + 4 ) = = ( x 2 + 2 ) ( x 2 + 4 ) ( x + 2 ) ( x − 2 ) a 2 − b 2 = ( a − b ) ( a + b )
The expression x 6 + 2 x 4 − 16 x 2 − 32 can be factored to ( x 2 + 2 ) ( x − 2 ) ( x + 2 ) ( x 2 + 4 ) . We used grouping and the difference of squares to simplify the expression step-by-step. The final factored form includes quadratic and linear factors.
;