0\to x > 0\to x\in\mathbb{R^+}\\\\log6x-log2=1\\\\log\left(6x:2\right)=log10^1\\\\3x=10\ /:3\\\\x=\frac{10}{3}\\\\x=3\frac{1}{3}\in D"> l o g 6 x − l o g 2 = 1 ; D : 6 x > 0 → x > 0 → x ∈ R + l o g 6 x − l o g 2 = 1 l o g ( 6 x : 2 ) = l o g 1 0 1 3 x = 10 / : 3 x = 3 10 x = 3 3 1 ∈ D
0\ \wedge\ b > 0\ \wedge\ c > 0\ \wedge\ d\in\mathbb{R}\\\\log_ab-log_ac=log_a(b:c)\\\\log_ab=d\iff\ a^d=b\ \ (log_ab=log_aa^d)"> a > 0 ∧ b > 0 ∧ c > 0 ∧ d ∈ R l o g a b − l o g a c = l o g a ( b : c ) l o g a b = d ⟺ a d = b ( l o g a b = l o g a a d )
Log(6x/2)=1 Log(3x)=1 This is the same as saying 10^1=3x 10=3x x=10/3 or 3 and 1/3
To solve lo g 6 x − lo g 2 = 1 , we simplify to lo g ( 3 x ) = 1 . From this we find 3 x = 10 , leading to the solution x = 3 10 or approximately 3.33.
;