a 3 ± b 3 = ( a ± b ) ( a 2 ∓ ab + b 2 )
y = x 3 + 64 = x 3 + 4 3 = ( x + 4 ) ( x 2 − 4 x + 4 2 ) = ( x + 4 ) ( x 2 − 4 x + 16 ) y = x 3 − 1000 = x 3 − 1 0 3 = ( x − 10 ) ( x 2 + 10 x + 1 0 2 ) = ( x − 10 ) ( x 2 + 10 x + 100 )
The expressions can be factored using the sum and difference of cubes formulas. Y = x 3 + 64 factors to ( x + 4 ) ( x 2 − 4 x + 16 ) and Y = x 3 − 1000 factors to ( x − 10 ) ( x 2 + 10 x + 100 ) . These formulas provide a way to express the original cubic forms in factored terms.
;