x 4 − y 4 = ( x 2 ) 2 − ( y 2 ) 2 = ( x 2 − y 2 ) ( x 2 + y 2 ) = ( x − y ) ( x + y ) ( x 2 + y 2 ) a 2 − b 2 = ( a − b ) ( a + b )
1)(x-y)(x+y)(x^2+y^2) =(x^2-y^2)(x^2+y^2) =x^4-y^4
2)(x-y)^2(x+y)^2 =(x^2-2xy+y^2)(x^2+2xy+y^2) =x^4+y^4
3)(x-y)^4 =x^4-4x^3y+6x^2y^2-4xy^3+y^2
4)(x^2-y^2)(x^2+y^2) =x^4-y^4
To factor the expression x 4 − y 4 completely, we use the difference of squares. It factors into ( x − y ) ( x + y ) ( x 2 + y 2 ) . This form cannot be simplified further using real numbers.
;