{ y = 4 3 x − 7 4 x − 6 y = 50 { y = 4 3 x − 7 4 x − 6 ( 4 3 x − 7 ) = 50 { y = 4 3 x − 7 4 x − 2 9 x + 42 = 50 { y = 4 3 x − 7 4 x − 4 2 1 x = 50 − 42
{ y = 4 3 x − 7 − 2 1 x = 8 / ∗ ( − 2 ) { y = 4 3 ∗ ( − 16 ) − 7 x = − 16 { y = − 12 − 7 x = − 16 { y = − 19 x = − 16
Y=3/4x-7 4x-6y=50
4x-6y=50 4x-6(3/4x-7)=50 4x-18/4x+42=50 -1/2x=8 x=-16
y=3/4(-16)-7 y=-12-7 y=-19
By substituting the expression for y into the second equation, we solve for x and find that x = -16. We then substitute x back to find y = -19. Thus, the solution to the system of equations is (x, y) = (-16, -19).
;