0\\\\3lnx=7-ln5\ /:3\\\\lnx=\frac{7-ln5}{3}\iff x=e^{\frac{7-ln5}{3}}"> 3 l n x + l n 5 = 7 ; x > 0 3 l n x = 7 − l n 5 / : 3 l n x = 3 7 − l n 5 ⟺ x = e 3 7 − l n 5
To solve the equation 3 ln x + ln 5 = 7 , isolate the logarithmic term, then divide by 3 and exponentiate both sides to find x = e 3 7 − l n 5 .
;