csc θ co tθ = ( ∗ ) − − − − − − − − − − − − co tθ = s in θ cos θ csc θ = s in θ 1 − − − − − − − − − − − − ( ∗ ) = s in θ cos θ : s in θ 1 = s in θ cos θ ⋅ 1 s in θ = cos θ
The expression c s c θ c o t θ simplifies to cos θ . This is derived by substituting the definitions of cotangent and cosecant into the original expression. Thus, the final answer is cos θ .
;