f ′ ( x ) = h → 0 lim h f ( x − h ) − f ( x ) f ( x ) = x − 4 = x 4 1 f ′ ( x ) = h → 0 lim h ( x + h ) − 4 − x − 4 = h → 0 lim h ( x + h ) 4 1 − x 4 1 = h → 0 lim h x 4 ( x + h ) 4 x 4 − ( x + h ) 4 = h → 0 lim [ x 4 ( x + h ) 4 x 4 − x 4 − 4 x 3 h − 6 x 2 h 2 − 4 x h 3 − h 4 ⋅ h 1 ] = h → 0 lim h x 4 ( x + h ) 4 − 4 x 3 h − 6 x 2 h 2 − 4 x h 3 − h 4
= h → 0 lim h x 4 ( x + h ) 4 h ( − 4 x 3 − 6 x 2 h − 4 x h 2 − h 3 ) = h → 0 lim x 4 ( x + h ) 4 − 4 x 3 − 6 x 2 h − 4 x h 2 − h 3 = x 4 ( x + 0 ) 4 − 4 x 3 − 6 x 2 ⋅ 0 − 4 x ⋅ 0 2 − 0 3 = x 4 ⋅ x 4 − 4 x 3 = x 5 − 4 D f = D f ′ = R \ { 0 }
To derive x − 4 using the limit definition, we substitute the function into the derivative formula, simplify the expression using binomial expansion, and then take the limit as h → 0 . The final result is that the derivative is f ′ ( x ) = − x 5 4 .
;