q 2 − 121 = q 2 − 1 1 2 = ( q − 11 ) ( q + 11 ) a 2 − b 2 = ( a − b ) ( a + b )
The polynomial q 2 − 121 can be factored as ( q − 11 ) ( q + 11 ) using the difference of squares formula. This works because 121 can be expressed as 1 1 2 . Hence, it follows the pattern a 2 − b 2 = ( a − b ) ( a + b ) .
;