0\ then\ x_1=\frac{-b-\sqrt\Delta}{2a};\ x_2=\frac{-b+\sqrt\Delta}{2a}\\\\\Delta=5^2-4\cdot1\cdot(-104)=25+416=441;\ \sqrt\Delta=\sqrt{441}=21\\\\x_1=\frac{-5-21}{2\cdot1}=\frac{-26}{2}=-13;\ x_2=\frac{-5+21}{2\cdot1}=\frac{16}{2}=8\\\\Answer:x=-13\ or\ x=8."> x 2 + 5 x − 104 = 0 a = 1 ; b = 5 ; c = − 104 Δ = b 2 − 4 a c ; i f Δ > 0 t h e n x 1 = 2 a − b − Δ ; x 2 = 2 a − b + Δ Δ = 5 2 − 4 ⋅ 1 ⋅ ( − 104 ) = 25 + 416 = 441 ; Δ = 441 = 21 x 1 = 2 ⋅ 1 − 5 − 21 = 2 − 26 = − 13 ; x 2 = 2 ⋅ 1 − 5 + 21 = 2 16 = 8 A n s w er : x = − 13 or x = 8.
You first have to factor and get (x-8)(x+13)=o and set them equal to zero x-8=0 x=8 x+13=0 x=-13
The solutions to the quadratic equation x 2 + 5 x − 104 = 0 are x = − 13 and x = 8 . This is found using the quadratic formula after computing the discriminant. Both values satisfy the equation.
;