h ( x ) = x 2 − 5 x − 50 = x 2 − 5 x − 25 − 25 = x 2 − 25 − 5 x − 25 = ( x 2 − 25 ) − ( 5 x + 25 ) = ( x 2 − 5 2 ) − 5 ( x + 5 ) = ( x − 5 ) ( x + 5 ) − 5 ( x + 5 ) = ( x + 5 ) ( x − 5 − 5 ) = ( x + 5 ) ( x − 10 ) A n s w er : Z eros a re x = − 5 an d x = 10.
The zeros of the function h ( x ) = x 2 − 5 x − 50 are found by factoring it into ( x − 10 ) ( x + 5 ) . Setting this equation to zero yields the solutions x = 10 and x = − 5 .
;