2 x 2 + x − 15 = 0 a = 2 , b = 1 , c = − 15 Δ = b 2 − 4 a c = 1 2 − 4 ∗ 2 ∗ ( − 15 ) = 1 + 120 = 121 x 1 = 2 a − b − Δ = 2 ∗ 2 − 1 − 121 = 4 − 1 − 11 = 4 − 12 = − 3 x 2 = 2 a − b + Δ = 2 ∗ 2 − 1 + 121 = 4 − 1 + 11 = 4 10 = 2 5 A n s w er : 2 x 2 + x − 15 = ( x + 3 ) ( x − 2 5 )
To factor the expression 2 x 2 + x − 15 , we first find the roots using the quadratic formula, which gives us the roots x 1 = − 3 and x 2 = 2 5 . The factored form of the expression is then 2 ( x + 3 ) ( x − 2 5 ) .
;