HRS - Ask. Learn. Share Knowledge. Logo

In Mathematics / Middle School | 2014-04-21

Find which two consecutive whole numbers the square root is between. Write the letter of the exercise on the number line between these two numbers.

[tex]\sqrt{30}[/tex], [tex]\sqrt{2}[/tex], [tex]\sqrt{45}[/tex], [tex]\sqrt{8}[/tex], [tex]\sqrt{23}[/tex], [tex]\sqrt{120}[/tex], [tex]\sqrt{138}[/tex], [tex]\sqrt{82}[/tex], [tex]\sqrt{11}[/tex], [tex]\sqrt{70}[/tex], [tex]\sqrt{0.5}[/tex], [tex]\sqrt{59}[/tex]

Asked by Marie17

Answer (2)

\sqrt{30}\\\\5 < \sqrt{30} < 6\\-------------\\1=\sqrt{1^2}=\sqrt1 < \sqrt2\\2=\sqrt{2^2}=\sqrt4 > \sqrt2\\\\1 < \sqrt2 < 2\\-------------\\6=\sqrt{6^2}=\sqrt{36} < \sqrt{45}\\7=\sqrt{7^2}=\sqrt{49} > \sqrt{45}\\\\6 < \sqrt{45} < 7\\-------------"> 5 = 5 2 ​ = 25 ​ < 30 ​ 6 = 6 2 ​ = 36 ​ > 30 ​ 5 < 30 ​ < 6 − − − − − − − − − − − − − 1 = 1 2 ​ = 1 ​ < 2 ​ 2 = 2 2 ​ = 4 ​ > 2 ​ 1 < 2 ​ < 2 − − − − − − − − − − − − − 6 = 6 2 ​ = 36 ​ < 45 ​ 7 = 7 2 ​ = 49 ​ > 45 ​ 6 < 45 ​ < 7 − − − − − − − − − − − − −
\sqrt8\\\\2 < \sqrt8 < 3\\-------------\\10=\sqrt{10^2}=\sqrt{100} < \sqrt{120}\\11=\sqrt{11^2}=\sqrt{121} > \sqrt{120}\\\\10 < \sqrt{120} < 11\\-------------\\12=\sqrt{12^2}=\sqrt{144} < \sqrt{138}\\13=\sqrt{13^2}=\sqrt{169} > \sqrt{138}\\\\12 < \sqrt{138} < 13\\-------------"> 2 = 2 2 ​ = 4 ​ < 8 ​ 3 = 3 2 ​ = 9 ​ > 8 ​ 2 < 8 ​ < 3 − − − − − − − − − − − − − 10 = 1 0 2 ​ = 100 ​ < 120 ​ 11 = 1 1 2 ​ = 121 ​ > 120 ​ 10 < 120 ​ < 11 − − − − − − − − − − − − − 12 = 1 2 2 ​ = 144 ​ < 138 ​ 13 = 1 3 2 ​ = 169 ​ > 138 ​ 12 < 138 ​ < 13 − − − − − − − − − − − − −
\sqrt{82}\\\\9 < \sqrt{82} < 10\\-------------\\3=\sqrt{3^3}=\sqrt9 < \sqrt{11}\\4=\sqrt{4^2}=\sqrt{16} > \sqrt{11}\\\\3 < \sqrt{11} < 4\\-------------\\8=\sqrt{8^2}=\sqrt{64} < \sqrt{70}\\9=\sqrt{9^2}=\sqrt{81} > \sqrt{70}\\\\8 < \sqrt{70} < 9\\-------------"> 9 = 9 2 ​ = 81 ​ < 82 ​ 10 = 1 0 2 ​ = 100 ​ > 82 ​ 9 < 82 ​ < 10 − − − − − − − − − − − − − 3 = 3 3 ​ = 9 ​ < 11 ​ 4 = 4 2 ​ = 16 ​ > 11 ​ 3 < 11 ​ < 4 − − − − − − − − − − − − − 8 = 8 2 ​ = 64 ​ < 70 ​ 9 = 9 2 ​ = 81 ​ > 70 ​ 8 < 70 ​ < 9 − − − − − − − − − − − − −
\sqrt{0.5}\\\\0 < \sqrt{0.5} < 1\\-------------\\7=\sqrt{7^2}=\sqrt{49} < \sqrt{59}\\8=\sqrt{8^2}=\sqrt{64} > \sqrt{59}\\\\7 < \sqrt{59} < 8"> 0 = 0 2 ​ = 0 ​ < 0.5 ​ 1 = 1 2 ​ = 1 ​ > 0.5 ​ 0 < 0.5 ​ < 1 − − − − − − − − − − − − − 7 = 7 2 ​ = 49 ​ < 59 ​ 8 = 8 2 ​ = 64 ​ > 59 ​ 7 < 59 ​ < 8

Answered by Anonymous | 2024-06-10

The square roots lie between the following consecutive whole numbers: 30 ​ is between 5 and 6, 2 ​ is between 1 and 2, 45 ​ is between 6 and 7, 8 ​ is between 2 and 3, and so on for the other values listed. Each square root approximation shows the range of values clearly defined. This yields an understanding of how square roots compare to whole numbers without using a calculator.
;

Answered by Anonymous | 2024-09-04