c\ and\\\\if\ a^2+b^2=c^2\ then\ triangle\ is\ right\\\\if\ a^2+b^2 > c^2\ then\ triangle\ is\ acute\\\\if\ a^2+b^2 < c^2\ then\ triangle\ is\ obtuse"> a ≤ b ≤ c − s i d es o f a t r ian g l e t h e n a + b > c an d i f a 2 + b 2 = c 2 t h e n t r ian g l e i s r i g h t i f a 2 + b 2 > c 2 t h e n t r ian g l e i s a c u t e i f a 2 + b 2 < c 2 t h e n t r ian g l e i s o b t u se
c^2\\\\The\ triangle\ is\ acute\ (answer:B.)"> a = 5 ; b = 7 ; c = 8 a 2 + b 2 = 5 2 + 7 2 = 25 + 49 = 74 c 2 = 8 2 = 64 a 2 + b 2 > c 2 T h e t r ian g l e i s a c u t e ( an s w er : B . )
The triangle with side lengths 5, 7, and 8 can be formed and is classified as an acute triangle. The correct answer is option B. All conditions of the triangle inequality theorem are satisfied, and the relationship between the squares confirms the classification.
;