HRS - Ask. Learn. Share Knowledge. Logo

In Mathematics / High School | 2014-05-01

How do I solve this infinite geometric series?

\[ \frac{64}{25} - \frac{16}{5} + 4 - 5 \]

Asked by heflin

Answer (3)

25 64 ​ − 5 16 ​ + 4 − 5 + .... a 1 ​ = 25 64 ​ ; a 2 ​ = − 5 16 ​ q = a 2 ​ : a 1 ​ q = − 5 16 ​ : 25 64 ​ = − 5 16 ​ ⋅ 64 25 ​ = − 4 5 ​ S n ​ = 1 − q a 1 ​ ( 1 − q n ) ​ S n ​ = 1 − ( − 4 5 ​ ) 25 64 ​ ( 1 − ( − 4 5 ​ ) n ) ​ = 25 64 ​ ( 1 − ( − 4 5 ​ ) n ) : ( 1 + 4 5 ​ ) = 25 64 ​ ( 1 − ( − 4 5 ​ ) n ) : 4 9 ​ = 25 64 ​ ( 1 − ( − 4 5 ​ ) n ) ⋅ 9 4 ​ = 225 256 ​ ⋅ ( 1 − ( − 4 5 ​ ) n )

Answered by Anonymous | 2024-06-10

x = 25 64 ​ − 5 16 ​ + 4 − 5 + ... a 1 ​ = 25 64 ​ ∧ a 2 ​ = − 5 16 ​ ⇒ q = a 1 ​ a 2 ​ ​ = 5 − 16 ​ : 25 64 ​ = 5 − 16 ​ ⋅ 64 25 ​ = − 4 5 ​ x = s u m o f t h e in f ini t e g eo m e t r i c ser i es
x = lim n → ∞ ​ a 1 ​ ⋅ 1 − q 1 − q n ​ = lim n → ∞ ​ 25 64 ​ ⋅ 1 + 4 5 ​ 1 − ( − 4 5 ​ ) n ​ = = lim n → ∞ ​ 25 64 ​ ⋅ 9 4 ​ ⋅ [ 1 − ( − 4 5 ​ ) n ] = 225 256 ​ + 225 256 ​ ⋅ lim n → ∞ ​ ( − 4 5 ​ ) n = 2 k ⇒ lim n → ∞ ​ ( − 4 5 ​ ) n = + ∞ ⇒ x → + ∞
n = 2 k + 1 ⇒ n → ∞ lim ​ ( − 4 5 ​ ) n = − ∞ ⇒ x → − ∞

Answered by kate200468 | 2024-06-10

The infinite geometric series diverges because its common ratio q = − 4 5 ​ has an absolute value greater than 1, indicating that it does not have a finite sum.
;

Answered by Anonymous | 2024-12-23