x 4 − y 4 = ( x 2 ) 2 − ( y 2 ) 2 = ( x 2 − y 2 ) ( x 2 + y 2 ) = ( x − y ) ( x + y ) ( x 2 + y 2 )
x 4 − y 4 = ( x 2 ) 2 − ( y 2 ) 2 = ( x 2 − y 2 ) ( x 2 + y 2 ) = ( x − y ) ( x + y ) ( x 2 + y 2 ) a 2 − b 2 = ( a − b ) ( a + b )
The expression x 4 − y 4 can be factored into ( x − y ) ( x + y ) ( x 2 + y 2 ) using the difference of squares method. First, it is expressed as the difference between two squares and then factored further. Thus, the final equivalent expression is obtained through successive factorizations.
;