HRS - Ask. Learn. Share Knowledge. Logo

In Mathematics / High School | 2014-05-03

If [tex]x^5y^4z^2 < 0[/tex], which of the following must be true?

I. [tex]xy < 0[/tex]
II. [tex]yz < 0[/tex]
III. [tex]xz < 0[/tex]

Asked by Eagon183

Answer (2)

0\ for\ y\in\mathbb{R^+}\ and\ x^5 < 0\ for\ x\in\mathbb{R^-}\\\\------------------------------\\\\x^5\underbrace{y^4z^2}_{> 0} < 0\iff x^5 < 0\Rightarrow xy < 0\ \wedge\ xz < 0\\\\------------------------------\\\\Answer:I\ xy < 0\ and\ III\ xz < 0."> x 5 y 4 z 2 < 0 y 4 ≥ 0 f or y ∈ R z 2 ≥ 0 f or y ∈ R x 5 > 0 f or y ∈ R + an d x 5 < 0 f or x ∈ R − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − x 5 > 0 y 4 z 2 ​ ​ < 0 ⟺ x 5 < 0 ⇒ x y < 0 ∧ x z < 0 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − A n s w er : I x y < 0 an d III x z < 0.

Answered by Anonymous | 2024-06-24

From the inequality x 5 y 4 z 2 < 0 , it must be determined that x < 0 . This implies that for the product to be negative, y must be positive, making statement I, x y < 0 , true, while statements II and III cannot be concluded as universally true. Therefore, the correct answer is option I.
;

Answered by Anonymous | 2024-12-23