It is geometric sequence. Therefore: 4"> a 1 = 4 q = 2 S = a 1 ∗ 1 − q 1 − q n 64 = 4 ∗ 1 − 2 1 − 2 n 16 = − 1 1 − 2 n − 16 = 1 − 2 n 16 + 1 = 2 n 2 4 + 1 = 2 n n > 4
After 4 yours she will have over 64 rabbits.
[a) -after\ how\ many\ years\ will\ she\ have\ 64\ rabbits\ \4\cdot \frac{1-2^n}{1-2} =64\ /:4\ \\frac{1-2^n}{-1} =16\ \ \ \Leftrightarrow\ \ \ 2^n-1=16\ \ \ \Leftrightarrow\ \ \ 2^n=17>16\ \2^n>2^4\ .\ \ \ \ \ \ \ \ \ \ \ \ \ \ a^b>a^c\ \ \wedge\ \ \ a>1\ \ \ \Rightarrow\ \ \ b>c\
4\ \Ans.\ Yolanda\ have\ 64\ rabbits\ after\ 4\ years]
b ) b − h o w m u c h r abbi t s w a s in t h e b e g innin g t − h o w man y t im es w i ll b e an in cre a se in t h e n u mb er o f r abbi t s . in t h e ye a rs e − h o w man y r abbi t s a re e x p ec t e d Y o l an d a b ⋅ 1 − t 1 − t n = e
Yolanda will have 64 rabbits after 4 years. The equation modeling this growth is P = 4 × 2 n , where P is the number of rabbits after n years. This reflects the initial amount of rabbits and the doubling effect each year.
;