f or e v ery x ∈ R i s ( 3 − x ) 2 ≥ 0 ( 3 − x ) 2 ≥ 0 ⇒ 3 ( 3 − x ) 2 ≥ 0 1 + ( 3 − x ) 2 ≥ 1 A n s . T h e minim u m v a l u e i s 1
1 + 3(3 −x)² >= 1, because 3 > 0 and (3 −x)² >=0 => the minimum value of 1 + 3(3 −x)² is 1.
The minimum value of the expression 1 + 3 ( 3 − x ) 2 is 1 . This minimum occurs when x = 3 .
;