6 w 4 − 54 w 2 = 6 w 2 ( w 2 − 9 ) = 6 w 2 ( w 2 − 3 2 ) = 6 w 2 ( w − 3 ) ( w + 3 ) a 2 − b 2 = ( a − b ) ( a + b )
First, we factor out the common term 6 w 2 from the expression 6 w 4 − 54 w 2 to obtain 6 w 2 ( w 2 − 9 ) . Next, recognizing that w 2 − 9 is a difference of squares, we factor this to get ( w − 3 ) ( w + 3 ) . The complete factorization is therefore 6 w 2 ( w − 3 ) ( w + 3 ) .
;