A ( − 4 , 0 ) , B ( 0 , − 8 ) T h e mi d p o in t M o f t h e l in e se g m e n t j o inin g t h e p o in t s ( x 1 , y 1 ) an d ( x 2 , y 2 ) i s : M = ( 2 x 1 + x 2 ; 2 y 1 + y 2 )
M = ( 2 − 4 + 0 ; ( 2 0 + ( − 8 ) ) M = ( 2 − 4 ; 2 − 8 ) M = ( − 2 ; − 4 )
The **coordinates **of the midpoint of AB are (-2, -4).
The midpoint of a** line segment** is the point that lies exactly halfway between the two endpoints.
To find the midpoint of line segment AB, we can use the midpoint formula:
Midpoint = (x1 + x2) / 2, (y1 + y2) / 2
where (x1, y1) are the coordinates of **point **A and (x2, y2) are the coordinates of point B.
Plugging in the **values **for points A and B, we get:
Midpoint = (-4 + 0) / 2, (0 - 8) / 2
Midpoint = (-2, -4)
Therefore, the coordinates of the midpoint of AB are (-2, -4).
for such more question on **coordinates **
https://brainly.com/question/30227780
#SPJ3
The midpoint M of points A and B is found using the formula M = ( 2 x 1 + x 2 , 2 y 1 + y 2 ) . For A ( − 4 , 0 ) and B ( 0 , − 8 ) , the midpoint is ( − 2 , − 4 ) .
;