To solve these subtraction problems by converting them to addition problems, we use the rule that subtracting a number is the same as adding its opposite. Here's how it's done for each problem:
20 − 8 Addition Form: 20 + ( − 8 ) Sum/Difference: 20 − 8 = 12
15 − 30 Addition Form: 15 + ( − 30 ) Sum/Difference: 15 − 30 = − 15
28 − 16 Addition Form: 28 + ( − 16 ) Sum/Difference: 28 − 16 = 12
14 − 16 Addition Form: 14 + ( − 16 ) Sum/Difference: 14 − 16 = − 2
− 8 − 10 Addition Form: − 8 + ( − 10 ) Sum/Difference: − 8 − 10 = − 18
− 12 − 17 Addition Form: − 12 + ( − 17 ) Sum/Difference: − 12 − 17 = − 29
23 − ( − 2 ) Addition Form: 23 + 2 Sum/Difference: 23 − ( − 2 ) = 25
− 17 − ( − 10 ) Addition Form: − 17 + 10 Sum/Difference: − 17 − ( − 10 ) = − 7
− 9 − ( − 3 ) Addition Form: − 9 + 3 Sum/Difference: − 9 − ( − 3 ) = − 6
34 − ( − 12 ) Addition Form: 34 + 12 Sum/Difference: 34 − ( − 12 ) = 46
For mixed operations:
10 + ( − 11 ) + 5 + ( − 5 ) Sum/Difference: Begin by adding the positive numbers: 10 + 5 = 15 Then add the negative numbers: 15 + ( − 11 ) = 4 Finally: 4 + ( − 5 ) = − 1
− 7 − 1 − 10 Addition Form: − 7 + ( − 1 ) + ( − 10 ) Sum/Difference: Add the negative numbers: − 7 + ( − 1 ) = − 8 Then: − 8 + ( − 10 ) = − 18
This method relies on understanding that subtraction can be rewritten as the addition of the opposite, making calculations more straightforward, especially when dealing with negative numbers.