Let's solve the exercises one by one.
Exercise 1 :
The sum of an unknown number and 7 :
The algebraic expression for the sum of a number x and 7 is written as:
x + 7
The product of an unknown number and 3 :
The algebraic expression for the product of a number x and 3 is written as:
3 x
The difference between a certain number and 8 :
The algebraic expression for the difference between a number x and 8 is:
x − 8
Two more than double a number :
First, double the number x to get 2 x . Then, add 2:
2 x + 2
Exercise 2 :
Expressions :
A = 3 x 2 + 5 x − 2
B = − 2 x − x 2 + 7
C = − 5 + 2 x 2 + x
1.1 A + C :
Add expressions A and C :
A + C = ( 3 x 2 + 5 x − 2 ) + ( − 5 + 2 x 2 + x )
Combine like terms:
( 3 x 2 + 2 x 2 ) + ( 5 x + x ) + ( − 2 − 5 ) = 5 x 2 + 6 x − 7
1.2 C - B :
Subtract B from C :
C − B = ( − 5 + 2 x 2 + x ) − ( − 2 x − x 2 + 7 )
Simplify and combine like terms:
( 2 x 2 + x + 2 x 2 ) + ( x + 2 x ) + ( − 5 − 7 ) = 3 x 2 + 3 x − 12
1.3 The product of A and -2 :
Multiply A by − 2 :
− 2 ( 3 x 2 + 5 x − 2 ) = − 6 x 2 − 10 x + 4
Consider the expressions :
A = 3 x 2 − 2 + 4 x
B = 2 x − 6 x 2 + 5 x 2
C = 4 − 2 x 2 + 3 x
2.1 A + B + C :
Combine all expressions:
( 3 x 2 − 2 + 4 x ) + ( 2 x − 6 x 2 + 5 x 2 ) + ( 4 − 2 x 2 + 3 x )
Combine like terms:
( 3 x 2 − 6 x 2 + 5 x 2 − 2 x 2 ) + ( 4 x + 2 x + 3 x ) + ( − 2 + 4 ) = 0 x 2 + 9 x + 2
2.2 -3A :
Multiply A by − 3 :
− 3 ( 3 x 2 − 2 + 4 x ) = − 9 x 2 + 6 − 12 x
These solutions encapsulate the algebraic manipulations required for each exercise, and each step is detailed to ensure clarity and understanding.