To solve this problem, we'll perform two transformations on the parallelogram ABCD: a translation followed by a rotation.
Step 1: Translation
The translation given is ( x + 3 , y − 2 ) . Let's apply this translation to each vertex:
A :
Original coordinates: ( − 5 , 1 )
Translated coordinates: ( − 5 + 3 , 1 − 2 ) = ( − 2 , − 1 )
B :
Original coordinates: ( − 4 , 3 )
Translated coordinates: ( − 4 + 3 , 3 − 2 ) = ( − 1 , 1 )
C :
Original coordinates: ( − 1 , 3 )
Translated coordinates: ( − 1 + 3 , 3 − 2 ) = ( 2 , 1 )
D :
Original coordinates: ( − 2 , 1 )
Translated coordinates: ( − 2 + 3 , 1 − 2 ) = ( 1 , − 1 )
Step 2: Rotation
After translating, we rotate each point 90° clockwise about the origin. The rule for this transformation is ( x , y ) → ( y , − x ) .
A' (-2, -1) :
After rotation: ( − 1 , 2 )
B' (-1, 1) :
After rotation: ( 1 , 1 )
C' (2, 1) :
After rotation: ( 1 , − 2 )
D' (1, -1) :
After rotation: ( − 1 , − 1 )
Conclusion
The final locations after both transformations are:
A" (-1, 2)
B" (1, 1)
C" (1, -2)
D" (-1, -1)
Therefore, the correct choice from the given options is the first one:
A" (-1, 2), B" (1, 1), C" (1, -2), D" (-1, -1).