Search
Questions in Grade College
[Done] The formula [tex]F(C)=\frac{9}{5} C+32[/tex] calculates the temperature in degrees Fahrenheit, given a temperature in degrees Celsius. You can find an equation for the temperature in degrees Celsius for a given temperature in degrees Fahrenheit by finding the function's
[Done] John rode his bike $\frac{2}{3}$ miles to school, $\frac{8}{9}$ miles to the mall, and $\frac{7}{18}$ miles back home. What is the total distance he rode? The total distance is $\square$ miles. (Type an integer, proper fraction, or mixed number. Simplify your answer.)
[Done] The base of a solid oblique pyramid is an equilateral triangle with an edge length of [tex]$s$[/tex] units. Which expression represents the height of the triangular base of the pyramid? A. [tex]$\frac{5}{2} \sqrt{2}$[/tex] units B. [tex]$\frac{5}{2} \sqrt{3}$[/tex] units C. [tex]$5 \sqrt{2}$[/tex] units D. [tex]$5 \sqrt{3}$[/tex] units
[Done] Given $y=\frac{8 x^2+12 x+4}{\sqrt{x}}$, find $\frac{d y}{d x}$
[Done] All proteins are the same. A. True B. False
[Done] Calculate the result: [tex]\frac{63,756 \cdot 60}{70 \cdot 5,280}=\square \text { miles / hour }[/tex]
[Done] Which values of [tex]$x$[/tex] and [tex]$y$[/tex] would make the following expression represent a real number? [tex](4+5 i)(x+y i)$[/tex] A. [tex]$x=4, y=5$[/tex] B. [tex]$x=-4, y=0$[/tex] C. [tex]$x=4, y=-5$[/tex] D. [tex]$x=0, y=5$[/tex]
[Done] Problems 15-16: Use the table below to determine the degree of the polynomial. 15. \begin{tabular}{|c|c|c|c|c|c|c|c|} \hline$x$ & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\ \hline$g(x)$ & 30 & 15 & 4 & -3 & -6 & -5 & 0 \\ \hline \end{tabular}
[Done] Xavier is attempting to recreate a problem his teacher showed him in class. To do so, he creates the table below. \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline 1 & 3 \\ \hline 2 & $?$ \\ \hline \end{tabular} He remembers that the slope of the line through the ordered pairs in the table was 4. What is the missing $y$-value in the table?
[Done] Select the correct answer. What is the simplified form of this expression? [tex]$\left(-3 x^2+4 x\right)+\left(2 x^2-x-11\right)$[/tex] A. [tex]$-x^2+5 x-11$[/tex] B. [tex]$-x^2+3 x-11$[/tex] C. [tex]$-x^2+3 x+11$[/tex] D. [tex]$-x^2+5 x+11$[/tex]
« Prev
1
...
13
14
15
16
17
...
2609
Next »