HRS - Ask. Learn. Share Knowledge. Logo

Questions in mathematics

[Done] Which equation shows the quadratic formula used correctly to solve [tex]7 x^2=9+x[/tex] for [tex]x[/tex]? [tex]x=\frac{-1 \pm \sqrt{(1)^2-4(7)(9)}}{2(7)}[/tex] [tex]x=\frac{1 \pm \sqrt{(-1)^2-4(7)(9)}}{2(7)}[/tex] [tex]x=\frac{-1 \pm \sqrt{(-1)^2+4(7)(9)}}{2(7)}[/tex] [tex]x=\frac{1 \pm \sqrt{(-1)^2+4(7)(9)}}{2(7)}[/tex]

[Done] Given $g(t)=10 t^{-\frac{1}{10}}$, find $g^{\prime}(t)$.

[Done] Solve for all values of $y$ in simplest form. $|6-3 y|=1$

[Done] What factor is used to convert feet per minute into miles per minute?

[Done] Use the tables below to find $(p+q)(2)$. \begin{tabular}{|c|c|} \hline$x$ & $p(x)$ \\ \hline 4 & -1 \\ \hline 2 & 3 \\ \hline-3 & 2 \\ \hline \end{tabular} \begin{tabular}{|c|c|} \hline$x$ & $q(x)$ \\ \hline 4 & 1 \\ \hline 2 & -2 \\ \hline-3 & 5 \\ \hline \end{tabular} $(p+q)(2)=\square$

[Done] \begin{tabular}{|c|c|c|c|c|} \cline { 2 - 5 } \multicolumn{1}{c|}{} & $A$ & $B$ & $C$ & Total \\ \hline$D$ & 0.12 & 0.78 & 0.10 & 1.0 \\ \hline$E$ & $R$ & $S$ & $T$ & 1.0 \\ \hline Total & $U$ & $X$ & $Y$ & 1.0 \\ \hline \end{tabular} Which value for $R$ in the table would most likely indicate an association between the conditional variables? 0. 09 1. 10 2. 13 3. 79

[Done] Julia and Lena started reading a science fiction book at the same time. During the first week, Lena read 10 more pages than Julia. The following week, Lena read 14 pages, and Julia read the same number of pages she read the first week. Now they are on the same page. Which equation can you use to find [tex]$j$[/tex], the number of pages Julia read during the first week? [tex]$j+10+14=j+j$[/tex] [tex]$j+10=j+j+14$[/tex] How many pages did Julia read during the first week? $\square$ pages

[Done] Kaitlyn can build a shed in 6 days. Mark can build the same shed in 8 days. Which equation can be used to find $d$, the number of days it would take Kaitlyn and Mark to build the shed together? | | Rate (Sheds per Day) | Time (Days) | Fraction Completed | | :------- | :-------------------: | :----------: | :-------------------: | | Kaitlyn | $\frac{1}{6}$ | $d$ | $\frac{1}{6} d$ | | Mark | $\frac{1}{8}$ | $d$ | $\frac{1}{8} d$ | $\frac{1}{6} d + \frac{1}{8} d = 1$

[Done] Statements & Reasons: | Statements | Reasons | |---|---| | -8x + 5 + 3 = -24 | Given | | -8x + 8 = -24 | 1 | | -8x = -32 | 2 | | x = 4 | 3 | Select the reason for each step: Step 1: Step 2: Step 3:

[Done] For two events [tex]$X$[/tex] and [tex]$Y$[/tex], [tex]$P(X)=\frac{2}{3}, P(Y)=\frac{2}{5}$[/tex], and [tex]$P(X \mid Y)=\frac{1}{5}$[/tex]. Find the probabilities. 1. [tex]$\frac{4}{15}$[/tex] I [tex]$P(\bar{Y} / \bar{X})=$[/tex] 2. [tex]$\frac{13}{15}$[/tex] [tex]$P(Y \cdot X)=[/tex]