Search
Questions in mathematics
[Done] Write 0.46 as a fraction
[Done] $(4x^2-6x+1)-(5x^2+8x+6)
[Done] Use [tex]f(x)=\frac{1}{2} x[/tex] and [tex]f^{-1}(x)=2 x[/tex] to solve the problems. [tex] \begin{array}{l} f(2)=1 \\ f^{-1}(1)=2 \\ f^{-1}(f(2))=2 \end{array} [/tex] [tex] \begin{array}{l} f^{-1}(-2)=-4 \\ f(-4)=-2 \\ f\left(f^{-1}(-2)\right)=-2 \end{array} [/tex] Complete the following: In general, [tex]f^{-1}(f(x))=f\left(f^{-1}(x)\right)=\square[/tex]
[Done] Tahmar knows the formula for simple interest is [tex]$I=P r t$[/tex], where [tex]$I$[/tex] represents the simple interest on an amount of money, [tex]$P$[/tex], for [tex]$t$[/tex] years at [tex]$r$[/tex] rate. She transforms the equation to isolate [tex]$P: P=\frac{l}{\pi}$[/tex]. Using this formula, what is the amount of money, [tex]$P$[/tex], that will generate [tex]$$20$[/tex] at a [tex]$5 \%$[/tex] interest rate over 5 years?
[Done] Evaluate the expression when [tex]x=6[/tex] [tex]7 x^2+\frac{72}{x}[/tex] Simplify your answer as much as possible.
[Done] Add: $\left(-4 x^3+2 y\right)+-9 x^3$
[Done] The volume of this sphere is [tex]$\frac{500 \pi}{3}$[/tex] cubic inches. What is its radius? Recall the formula Sphere [tex]$V=\frac{4}{3} \pi r^3$[/tex].
[Done] The cost to rent skis at a local sporting goods store is $15 plus $20 per day. Which equation models the relation between the total cost to rent, [tex]$c$[/tex], and the length of the rental in days, [tex]$d$[/tex]? A. [tex]$c=(15+20) d$[/tex] B. [tex]$c=15 d+20$[/tex] C. [tex]$c=20 d+15$[/tex] D. [tex]$c=(15+d) 20$[/tex]
[Done] $12-3(2 w+1)=7 w-3(7+w)$
[Done] Find and classify the critical points of [tex]$z=\left(x^2-2 x\right)\left(y^2-7 y\right)$[/tex] Local maximums: $\square$ Local minimums: $\square$ Saddle points: $\square$
« Prev
1
...
139
140
141
142
143
...
3347
Next »