HRS - Ask. Learn. Share Knowledge. Logo

Questions in mathematics

[Done] Find the value of each variable. $\left[\begin{array}{cc} -5-t & 0 \\ 8 & -22 \end{array}\right]=\left[\begin{array}{cc} -5 & 0 \\ 8 & -4 y-2 \end{array}\right]$

[Done] Solve the equation [tex]$125=x^{\frac{3}{2}}$[/tex]. A. [tex]$x=25$[/tex] B. [tex]$x=5$[/tex] C. [tex]$x=-5$[/tex] or [tex]$x=25$[/tex] D. [tex]$x=5$[/tex] or [tex]$x=25$[/tex]

[Done] Choose the property used to rewrite the expression. [tex]\log \sqrt[15]{125 x^3}-\frac{1}{5} \log 5 x[/tex] A. Commutative Property B. Product Property C. Power Property D. Quotient Property

[Done] Which two values of $x$ are roots of the polynomial below? $x^2-11 x+13$ A. $x=2.5$ B. $x=\frac{11-\sqrt{-109}}{4}$ C. $x=\frac{11-\sqrt{69}}{2}$ D. $x=\frac{11+\sqrt{-109}}{4}$ E. $x=3$ F. $x=\frac{11+\sqrt{69}}{2}$

[Done] Which table represents an exponential function? | x | y | |---|---| | 1 | 5 | | 2 | 10 | | 3 | 15 | | 4 | 20 | | 5 | 25 |

[Done] Mr. Hann is trying to decide how many new copies of a book to order for his students. Each book weighs 6 ounces. Which table contains only viable solutions if $b$ represents the number of books he orders and $w$ represents the total weight of the books, in ounces? \begin{tabular}{|c|c|} \hline Books $( b )$ & Weight $( w )$ \\ \hline-2 & -12 \\ \hline-1 & -6 \\ \hline 0 & 0 \\ \hline 1 & 6 \\ \hline 2 & 12 \\ \hline \end{tabular} \begin{tabular}{|c|c|} \hline Books $( b )$ & Weight $( w )$ \\ \hline-1 & -6 \\ \hline-0.5 & -3 \\ \hline 0 & 0 \\ \hline 0.5 & 3 \\ \hline 1 & 6 \\ \hline \end{tabular}

[Done] Part 1 of 2 a. Use the appropriate formula to find the value of the annuity. b. Find the interest. | Periodic Deposit | Rate | Time | | :--------------- | :--------------------------------- | :-------- | | $100 at the end of every six months | 5.5 % compounded semiannually | 25 years | Click the icon to view some finance formulas. a. The value of the annuity is $ [ ] (Do not round until the final answer. Then round to the nearest dollar as needed.)

[Done] Does this table represent a function? Why or why not? \begin{tabular}{|c|c|} \hline$x$ & $y$ \\ \hline 4 & 0 \\ \hline 7 & 5 \\ \hline 8 & 5 \\ \hline 8 & 8 \\ \hline 10 & 9 \\ \hline \end{tabular} A. Yes, because every $x$-value corresponds to exactly one $y$-value. B. Yes, because there are two $x$-values that are the same. C. No, because one $x$-value corresponds to two different $y$-values. D. No, because two of the $y$-values are the same.

[Done] $\frac{x}{4}-\frac{5}{2 x}=\frac{1}{4 x}$

[Done] According to the second-order condition for convexity, what must be true for a function to be convex?