HRS - Ask. Learn. Share Knowledge. Logo

Questions in mathematics

[Done] The graph of [tex]y=4 sin (x+3)-2[/tex] is obtained by shifting the graph of [tex]y=4 sin x-2[/tex] horizontally 3 units to the right. A. True B. False

[Done] e.) $(a+b)^2 \times(a+b)^{-2}$

[Done] Which matrix is the inverse of $\left[\begin{array}{ll}3 & 7 \\ 1 & 2\end{array}\right]$ ? A. $\left[\begin{array}{cc}-2 & -7 \\ 1 & -3\end{array}\right]$ B. $\left[\begin{array}{cc}2 & -7 \\ -1 & 3\end{array}\right]$ C. $\left[\begin{array}{cc}-2 & 7 \\ 1 & 3\end{array}\right]$ D. $\left[\begin{array}{cc}-2 & 7 \\ 1 & -3\end{array}\right]$

[Done] Compute: [tex]$\frac{3^{15}}{3^6 \cdot 3^5}$[/tex]

[Done] What is the difference? $\frac{x}{x^2-16}-\frac{3}{x-4}$ $\frac{2(x+6)}{(x+4)(x-4)}$ $\frac{-2(x+6)}{(x+4)(x-4)}$ $\frac{x-3}{(x+5)(x-4)}$ $\frac{-2(x-6)}{(x+4)(x-4)}$

[Done] Which of these is the absolute value parent function? A. [tex]$f(x)=x^2$[/tex] B. [tex]$f(x)=|x|$[/tex] C. [tex]$f(x)=2^x$[/tex] D. [tex]$f(x)=x$[/tex]

[Done] The following is a listing of the amount of sugar in six popular snacks found on a high school camp: 34 g, 34 g, 42 g, 50 g, 52 g, 58 g. What is the median? A. 46g B. 42g C. 34g D. 50 g

[Done] Use long division to find the quotient below. $\left(4 x^3+2 x^2+50\right)-(2 x+5)$ A. $2 x^2-4 x+10$ B. $2 x^2-3 x+10$ C. $2 x^2+3 x+10$ D. $2 x^2+4 x+10$

[Done] Consider the line [tex]y=\frac{2}{3} x-4[/tex]. A line parallel to the graph of the line would have a slope of $\square$ . A line perpendicular to the graph of the line would have a slope of $\square$.

[Done] List the ordered pairs obtained from the equation, given $\{-2,-1,0,1,2,3\}$ as the domain. Graph the set of ordered pairs. Give the range. $y=-2 x+4$ How can the ordered pairs be found? A. Substitute the values $-2,-1,0,1,2$, and 3 for $y$ in the equation and solve for x. B. Substitute the values $-2,-1,0,1,2$, and 3 for $x$ in the equation and solve for $y$. C. Substitute the values -2 and 3 for $x$ in the equation and solve for $y$. D. Substitute the values -3 and 2 for $y$ in the equation and solve for $x$.