Search
Questions in mathematics
[Done] 4. Find the greatest number that divides 204 and 64 without a remainder. 5. Use Euclid's division algorithm to find the HCF of 455 and 42. 6. A sweet seller has 420 Kaju burfis and 130 Badam burfis. She wants to stack them in such a way that each stack has the same number and same type, and they take up the least area of the tray. What is the number of burfis that can be placed in each stack for this purpose?
[Done] Factor. [tex]x^2+14 x+48[/tex] A. [tex](x+6)(x-8)[/tex] B. [tex](x+8)(x-6)[/tex] C. [tex](x-8)(x-6)[/tex] D. [tex](x+6)(x+8)[/tex]
[Done] Divide using synthetic division. $\left(x^4+11 x^3+29 x^2-8 x-48\right) \div(x+4)$
[Done] What is the range of $f(x)=2 \sqrt{-x}+2$? A. $(-\infty, 2)$ B. $[2, \infty)$ C. $(-\infty, 2]$ D. $(2, \infty)$
[Done] Solve $\log _3(x+1)=\log _6(5-x)$ by graphing. What equations should be graphed? A. $y_1=\frac{\log (x+1)}{\log 3}$ B. $y_1=\frac{\log 3}{\log (x+1)}$ C. $y_2=\frac{\log 6}{\log (5-x)}$ D. $y_2=\frac{\log (5-x)}{\log 6}$
[Done] Find the stationary points and point of inflexion for the equation [tex]y=\frac{1}{3} x^3-2 x^2+3 x[/tex]
[Done] Select the best answer for the question. Which of the following is a monomial? A. [tex]$2 x+y z$[/tex] B. [tex]$2+x y z$[/tex] C. [tex]$2 x y z^2$[/tex] D. [tex]$2 x-y z$[/tex]
[Done] Product property: [tex]$\log _b x y=\log _b x+\log _b y$[/tex] How would you expand [tex]$\log _4 12$[/tex] so that it can be evaluated, given [tex]$\log _4 3 \approx 0.792$[/tex]? [tex]$\log _4 3 \cdot \log _4 4 \sqrt{a^2+b^2}$[/tex] [tex]$\log 3+\log 4$[/tex] [tex]$\log _4 3+\log _4 4$[/tex] [tex]$\log 3 \cdot \log 4$[/tex] Write [tex]$\log _7(2 \cdot 6)+\log _7 3$[/tex] as a single log. [tex]$\log _7 11$[/tex] [tex]$\log _7 15$[/tex] [tex]$\log _7 36$[/tex] Expand: [tex]$\log _h(9 j k)$[/tex] [tex]$\log _h 9 \cdot \log _h j \cdot \log _h k$[/tex] [tex]$\log _h 9+\log _h j+\log _h k$[/tex] [tex]$\log 9+\log j+\log k$[/tex]
[Done] Select the correct answer. Which point lies on the circle represented by the equation $(x-3)^2+(y+4)^2=6^2$? A. $(9,-2)$ B. $(0,11)$ C. $(3,10)$ D. $(-9,4)$ E. $(-3,-4)$
[Done] Show that if $a$ is a constant, (a) [tex]\frac{d}{dx}[\tan ^{-1}(\frac{x}{a})]=\frac{a}{a^2+x^2}[/tex] (b) [tex]\frac{d}{dx}[\sin ^{-1}(\frac{x}{a})]=\frac{1}{\sqrt{a^2+x^2}}[/tex]
« Prev
1
...
359
360
361
362
363
...
3347
Next »